Advanced wastewater treatment system for high BOD wastewater

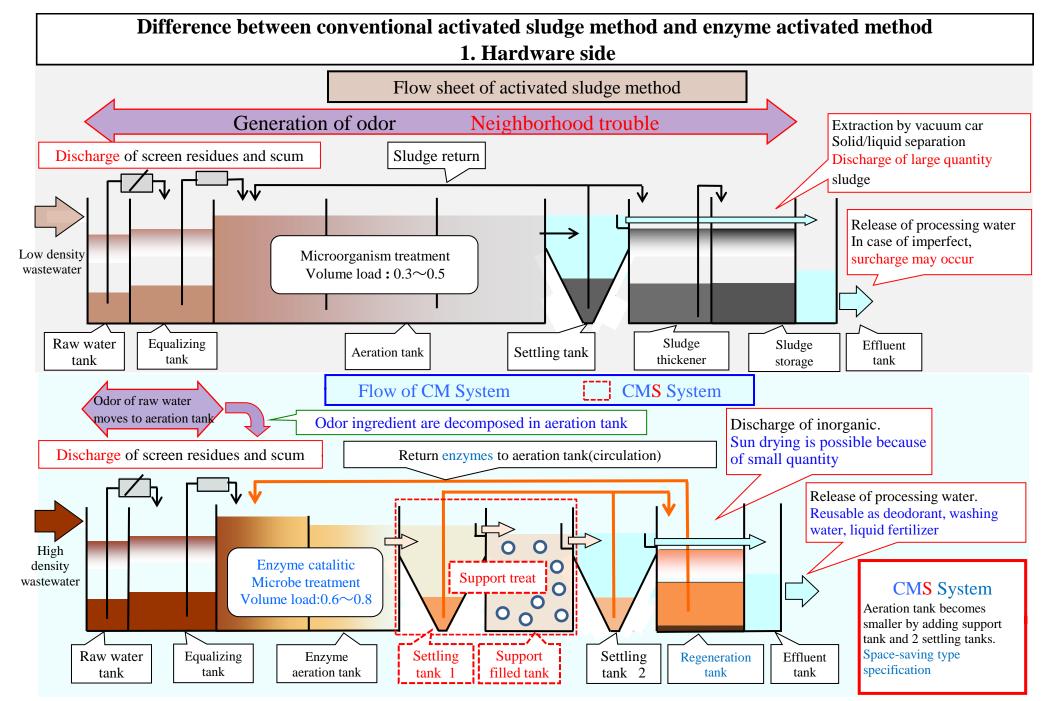
Enzyme activated method

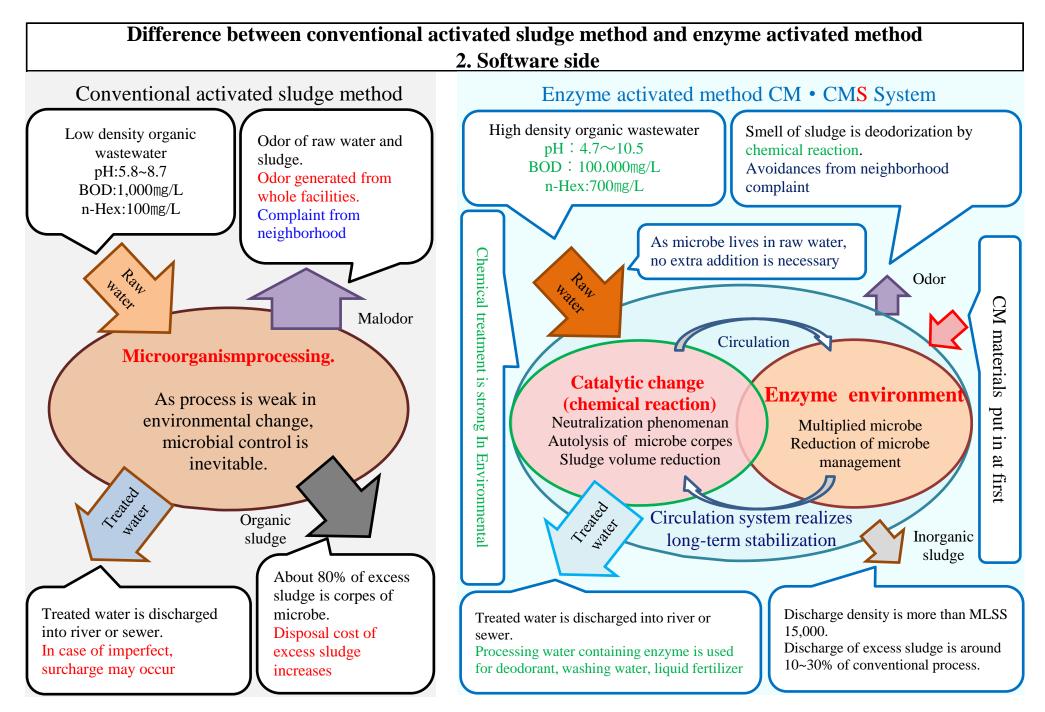
CM System · CMS System Catalysis + Microorganism + Support

CMS Systm: Japan Patent No. 595023

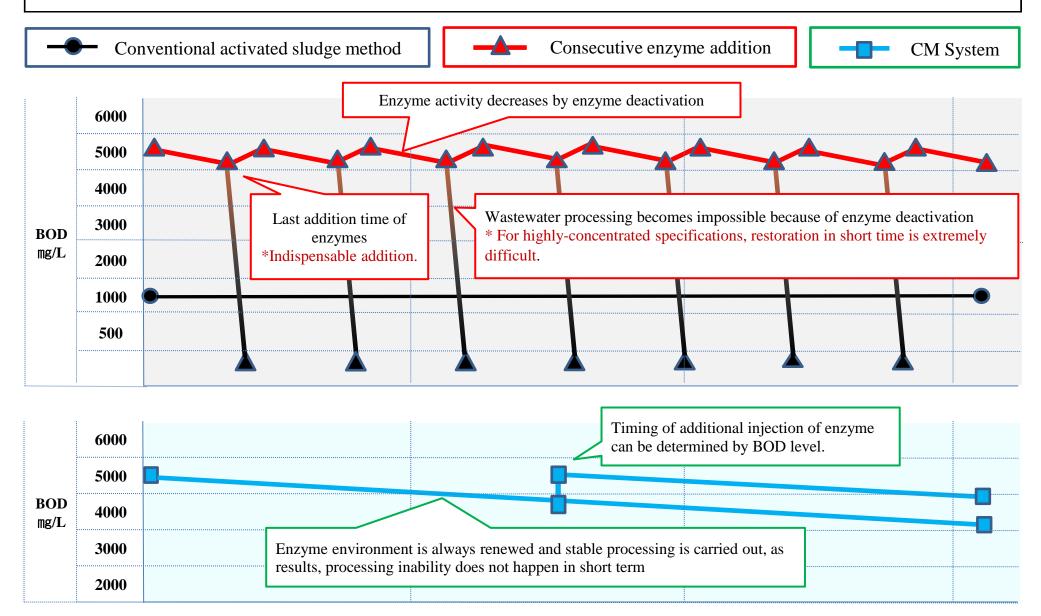
Technology description

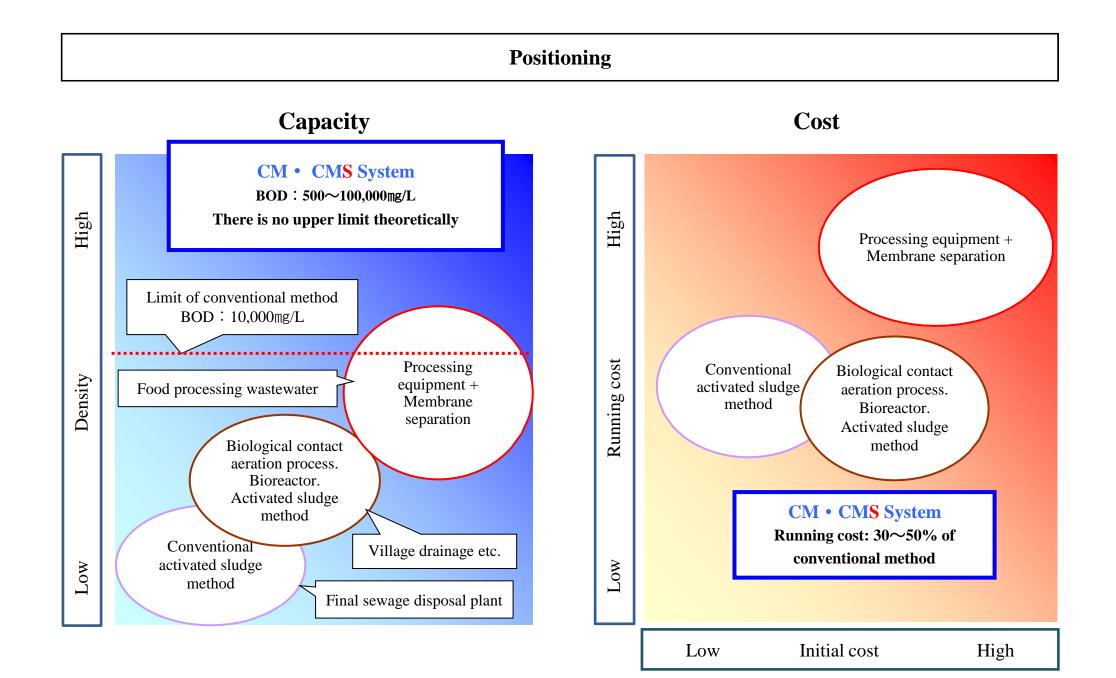
Overseas Sales Dep


Sales agency : Tomoe Engineering Co., Ltd. Osaki Bright Core, 5-15 Kitashinagawa 5-chome, Shinagawa-ku, Tokyo 141-0001, Japan Tel: +81 3 3442 5157 Fax: +81 3 3442 5179



URL http://www.tomo-e.co.jp


E-mail overseas@tomo-e.co.jp Manufacturer : Jfils Ltd. 5-12-30, Nakai Kokurakita-ku Kitakyushu-city, Fukuoka Prefecture 803-0836, Japan


Difference between consecutive enzyme addition method and CM System.

Difference between latest activated sludge method and enzyme activated method 3. Initial and running cost

Raw water: Organic wastewater			Latest activated sluge method	CM • CMS System							
	BOD mg/L ng capacity pH						BOD mg/L		Max.4,000~7,000	100,000 (there is no upper limit theoretically)	
Processing capacity							5.8~8.7	$4.7 \sim 10.5$ (in case short time $4 \sim 11$)			
n-		ex mg/L	100	Even 700 becomes less than 1 (actual performance)							
Disposal expense of excess sludge			assume 100%	Less than $10\sim30\%$							
Initial	Middle	No-pretreatment BOD: 7,000	assume 100%	110~120%	Reference level						
Running	density			Amlount of excess sluge $: 10 \sim 30\%$ Total $: 70 \sim 80\%$	Reference level						
Initial	High	No-pretreatment BOD: 9,000	Unfoosible	$90\sim100\%$ of activated method	Reference level						
Running	density	рН: 4.7 n-Hex:500	Unfeasible	Amount of excess sludge : 10~30% Total : 30~50%	Reference level						

Practica	Practical example : Comparison of annual running cost. Object: Food-processing factory drainage Unit: thousand yen										
	Specification : Flow rate:50ton/day, BOD=4,500, COD=3,000, n-Hex-700, pH=4.7										
	Chemical expense		Sludge disposal cost	N	lecessary cost		Administra cost	tion	Total	Machine update cost (future)	
Acivated method	1,800	+	3,750	+	500	+	1,000	=	7,050	15,000 (Dehydrater etc)	
CMS System	0	+	1,200	+	0	+	1,700	=	2,900	0	
	Residue, scum and excess sludge Amount of annual reduction = 4,150 thousand Yen										

	Marketing					
Indus	stries having problems					
	Confectionery production	Cooling drinks				
	Meat processing	Dairy products production				
	Fishery products processing	Starches processing (Soy sauce, Tofu)				
Probl	Others. Hog raising business. Shochu brewing em content	g				
	em content					
Probl	em content Because density is high, handle as industrial	waste disposal				
	em content Because density is high, handle as industrial Problem Expensive industrial waste	waste disposal processing cost. Anxious whether appropriate disposal is done or				
1,	em content Because density is high, handle as industrial waste Problem Expensive industrial waste Whether existing processing equipment attain	waste disposal processing cost. Anxious whether appropriate disposal is done or				
1,	em content Because density is high, handle as industrial waste Problem Expensive industrial waste Whether existing processing equipment attain	waste disposal processing cost. Anxious whether appropriate disposal is done or a n effluent standard or not				

: Anxious about odor pollution to neighborhood

Problem

Recently, issue of malodor becomes remarkable

Facilities summary

New construction : Treatment of factory effluent

New construction : Reprocessing of excess sludge

CM System: Smaller than conventional sludge method (10-15% decrease)

CMS System : More smaller in case of support treatment (20~30% decrease)

Concrete • aboveground, semi-basement, underground Steel and Stainless steel • aboveground

* Stable operation in volume load 0.6-0.8

* Support becomes bio organism bed

Effective for volume-reduction of large amount of excess sludge

CM • **CMS** : Disposal of microbe's corpse existing in excess sludge before dehydration *Volume reduction rate : 50~80%

Reinforced concrete aboveground facility

Existing diversion : Perfect zymogenesis

Existing diversion : Zymogenesis by

Existing diversion : Semi-zymogenesis

enlargement of regeneration tank

changing to by-pass process

Reinforced concrete semi-basement faility

Existing diversion. Steel structure

Remodel of existing facilities into complete zymogenesis is possible, in case shutdown is possible during necessary period.

Zymogenesis is possible by addition of regeneration tank, in case short time shutdown is possible.

Chang to semi-zymogenesis is possible by addition of small CM system, in case shutdown is not permitted.

Principle of by-pass method : 10% of raw water is treated by enzyme processes of bypass, therefore load of facilities is reduced by 10%. Processing water goes back up to existing aeration tank.

Consecutive insertion of water containing enzymes stabilizes operation and reduce excess sludge.

Sales framework, Maintenance & Administration structure

Sales framework

Base of domestic sale :Fukuoka-Pref., Saga-Pref. and TokyoBase of overseas sale : Fukuoka-Pref. and TokyoSale area:Japan and foreign countries

Sales results until 2016:Tochigi ~ Okonawa, Pref. 21 facilities. Proof experiment: 3 (in Oversea), 4 (in Japan) Sales plan in 2017: 2 facilities (in Japan), 1 facility (in Vietnam), more than 5 test plants (Domestic and abroad) Future sale plan to abroad: Vietnam, India, Indonesia and othrers. Developed countries

Maintenance system

When problem is not settled locally, we dispatch our employees from head office and deal with.

When maintenance takes time, we ask for cooperation of client or subcontractor

When local correspondence is possible, we ask for handling of client or subcontractor themslves

Please give us notice over telephone

In case of oversea : Our local subcontractor will cope. We are ready to deal through telephone and E-mail

Administration system

Client, subcontractors of client, our subcontractors, local management companies handle.

After trial run, we carry out management training to concerned parties

Past results

	Discharge	Influent pH	BOD(mg/L)	Flow rate (m ³ /D)	Kind of drainage	Area	Introduction body
New	River	5.2	1,300	150	Food processing	Kansai	G Food
Existing diversion	River	6.2	8,500	25	Hog raising	Kyushu	O Stock raising
New construction	River	5	1,600	400	Food processing	Kansai	H Food
New construction	River	8.9	9,000	12.5	Hog raising	Kyushu	U Stock raising
Existing diversion	River	6	1,100	30	Food processing	Chubu	S Food
Existing diversion	River	5.2	1,300	60	Food processing	Chubu	S Food
Existing diversion	River	11~4.5	1,800	900	Lavation	Kantou	H Processing
New construction	River	5.2	1,300	240	Starch production	Kyushu	F Association
New steel made	Sewage	3.5~5.3	4,500	60	Food processing	Kyushu	S Food
Existing diversion	Sewage	4.0	3,000	1.2	Food processing	Kyushu	K Recycling
Existing diversion	River	4.0	800	20	Food processing	Kyushu	K Food
New construction	On-site	4.0	1,000	5	Drinking water	Kyushu	C Drink

Several others

Sampling at residues sureen Cloudy

Sampling at No.1 aeration tank Deposition : Enzyme materials and flock

Sampling at support filled tank (S System) Floating matter: support

Sampling at final settler Approx. transparent

Verification survey by demonstration experiment Example: High density wastewater from sweet potato shochu brewing factory

Test-plant of Jfils

Experimental equipment : CM120L

Test-plant of client

Shochu brewing in Miyazaki Pref. Experiment period: 35 days

1) E 2014 011 X12 2015 11		2	公益時(1法) (約45大下スか (100 (1488) 15 (148 (148 (148)	パロ: - 王崎永幸 1999月11日 1991日 - 1995 1991日 - 1995 1991日 - 1995	* 1179100
	u.	MACH BALL		1	Answis
eravaer	м	0.1		-	HARADE
2790 X 849	_	60.05100	_	-	inter i
Catch Chester		62600			Distance and
-0.5	4/2	98809			OF NORS
	411	15304			4 (29/5 htt)
9		118			10 A 190, 10-1
c	14310	110			#11-02-0.5
0 Dimovide a consecutive	.u. 98980	201562.00	4412C # (.0	78.6.	
		Befo oces		5	15.3

	61	76.	auc.	明	**		112011 4 02030 84/120 A 321 13
090		g			公益时间选入 1868天宁日317 1878 1888 189	シング1658	89
VA MTINI BERGEN 2010. KARIF	n Y AS	XNI:	24.181	en - ii		9122는 약국 5.94875081L	:530
78 8.6-1-85	н		11.2	M.A.L.N			$ \hat{\gamma} \leftrightarrow \hat{\mu} $
			7.8	15.003			108.4
1.制化学的用於机单加		m/ C					PER COR B
6.7786-05-0.747 1788-0		4/2		- 10			SECONDER SHE
行放神机能		10/1					anys trains
h:238		-1					IB KERE D.1 III SY HALSOPES
100		-	1	21			attace with the second
			-		-		
1編末1 18月1日 - 19月1日 - 19月1000 - 19月1000 - 19月10000 - 19月100000000000000000000000000000000000	m. 58	(best a	11: J2#	327.4	Break Lot av	ch6.	
				ft	er ssing		54

Analytical values by client

*	(1	
袭度計量 9	: 証明書	<u>36.331</u> Vil 244 3
	25 13 本日 たん形式人 710	

<u>****</u>

行业利益物質等		产量结果	22732	野草方田
A展イオン協定(50)	-	4.1 (10)		」115 X 0102 12.1 ポラメ電相談
amicantiana a Sto	m/2.			J15 K 0102 21.及び32.5 所設電影 20 例記・各釈説
化中的能用要求量 (000~)	-	38000		JIS K 0100 17 造マンガン戦力リウム構定(
Janianter (181)(191月 (n-ban)	10/2	27		
4回春夏 (53)	at/1	26000		
金日ン (2-17)	m/2	320	0.5	
全世室 (7-3)	m/3.	1200	0.5	
		117 4 6		
	- 1		-	
			-	
			-	
			-	
(信令)				

Analytical values by Jfils

Three hours progress

Objective	High-concentrated waste fluid processing • No-discharge process	
Experimental equipment	CM120L (BOD: 1,000mg/L • hour=120L/day)	
Analysis by Jfils	Raw water BOD : 38,000 mg/L pH:4.1 %1	
Before processing	Raw water BOD : 63,000 mg/L pH:4.0	
After processing	Treated water BOD : 7.3mg/L pH:7.6	
Throughput	Raw water (3L/Day) is diluted with processing water (30L/Day) No discharge experiments	
Test period	35 days experiment by client Jfils carried out only setting and removal of facilities	
Comment of president	Wonderful result was beyond my expectation. I'd like to enhance this technology to many companies having problems on high density wastewater treatment	